

# iKaaS: intelligent Knowledge as a Service platform

9 May 2017

# Stylianos Georgoulas Shinsaku Kiyomoto





# **Table of Contents**

- Project Introduction
- Challenges in IoT + Big Data + Cloud and the iKaaS approach
- Smart City Applications in iKaaS
- Cross-border issues
- Our legacy to the community
- Summary
- Q&A
- Conclusions





# **Table of Contents**

- Project Introduction
- Challenges in IoT + Big Data + Cloud and the iKaaS approach
- Smart City Applications in iKaaS
- Cross-border issues
- Our legacy to the community
- Summary
- Conclusions





- EU-JP collaboration
- Duration 3 years (1st October 2014 30 September 2017)
- 15 partners (9 EU and 6 JP)
- Budget: ~3 million euros















# **Table of Contents**

- Project Introduction
- Challenges in IoT + Big Data + Cloud and the iKaaS approach
- Smart City Applications in iKaaS
- Cross-border issues
- Our legacy to the community
- Summary
- Conclusions





- Requirements coming from IoT + Big Data + Cloud (1/2)
  - Vast amount of IoT devices and data
  - Topological fragmentation of IoT endpoints
  - Heterogeneous in nature devices and data; need to be understood; need to be discovered
  - Security and privacy of data





- Requirements coming from IoT + Big Data + Cloud (2/2)
  - Quality and trust of data and processing; data sources not strictly controlled; software/hardware issues
  - Expose data (raw and processed) and knowledge generation functionalities
  - Re-use of data and services
  - Autonomic management and orchestration





# iKaaS approach

- Multi cloud environment; maximize coverage and amount of resources to be offered
- Global Cloud; legacy cloud computing paradigm.
- Local Clouds; formed on demand to extend coverage and capabilities









# iKaaS platform features

- Efficient management of heterogeneous IoT devices
- Unified representation of data/services and platform capabilities
- Distributed data storage and processing
- Security and privacy of data
- Quality of data and trust
- Knowledge-as-a-Service
- Autonomic cloud-aware service management











| Platform features                    | Components of the iKaaS architecture |
|--------------------------------------|--------------------------------------|
| Efficient management of              | Virtual Entity                       |
| heterogeneous IoT devices            |                                      |
| Efficient and unified representation | iKaaS data model, Local Cloud DB,    |
| of the data from IoT devices         | Virtual Entity, Resource Catalogue   |
| Distributed data storage and         | Local Cloud DB, Global Knowledge     |
| processing                           | DB, Local and Global Data Processing |
| Security of data and information     | Security Gateway, Privacy DB, Global |
|                                      | Service Manager                      |
| Quality of data and information      | (Local) Data Processing              |
| Knowledge-as-a-Service (KaaS)        | iKaaS knowledge model, Global and    |
|                                      | Local Data Processing, Global        |
|                                      | Knowledge DB, Local Cloud DB         |
| Consolidated description of service  | iKaaS service and platform model,    |
| components and platform              | Resource Catalogue                   |
| capabilities                         |                                      |
| Autonomic service                    | Global and Local Service Manager,    |
| management/orchestration             | Global and Local Cloud Manager       |





# Key points to keep in mind (1/2)

- Multi-cloud architecture; allow anyone with infrastructure to contribute it (edge/fog computing ++)
- Knowledge-as-a-Service; ease sharing of data/algorithms; expose data and software capabilities
- Docker container implementations with Kubernetes as the cloud manager





# Key points to keep in mind (2/2)

- Docker vs VMs
  - lower overhead than traditional VMs by making use of kernel features
  - comparable with VMs in terms of performance
  - much faster instantiation/decommission of instances compared to VMs
  - supported by main free/commercial cloud management products (not only Kubernetes)



# **Table of Contents**

- Project Introduction
- Challenges in IoT + Big Data + Cloud and the iKaaS approach
- Smart City Applications in iKaaS
- Cross-border issues
- Our legacy to the community
- Summary
- Conclusions











#### Service of Environmental Health in Madrid

- Use real-time and historical environmental data, user profiles, traffic and other resources
- Provide warnings and recommendations to citizens











- Caution: NO2 levels exceeds maximum threshold
- Danger: NO2 levels exceeds. Protocol activated.





# Ambient Assisted Living in Smart City

- Use indoor condition, activity meter and external data (e.g. weather, traffic)
- Support home automation
- Support Smart City navigation
- Support remote health monitoring





KaaS for Home Automation





www.EUbusinessinJapan.eu





















**HORI** 







# Town Management Service in Tago-nishi

- Use static, environmental and energy management data
- Predict weather and energy consumption
- Assist town management personnel in identifying dangerous areas in the city in advance































 Virtual walkthrough in the town in different simulated seasons and from the "eyes" of different people



# Health Support Service in Tago-nishi

- Use indoor condition and activity meter data
- Identify physical inactivity
- Alert to break sedentary behaviour





iKaaS **Platform** 

Knowledge-Integration

Health support service for residences in Tago-nishi area.

- Identification of staying-athome/physical inactivity elderly residents
- · Alert to break sedentary behaviour





- This use case is conceptual focusing mostly in the data acquisition aspects
- Evaluate how much elderly people would be willing to allow personal data collection
- 20% of elderly people asked refused completely
- 20% of elderly people agreed only to indoor environmental sensor data collection





# **Table of Contents**

- Project Introduction
- Challenges in IoT + Big Data + Cloud and the iKaaS approach
- Smart City Applications in iKaaS
- Cross-border issues
- Our legacy to the community
- Summary
- Conclusions





### Technological issues

- Data format/structure needs to be aligned; therefore the need for the iKaaS model
- Docker only recently through Flocker started supporting migration of data together with the container-based application

## Security/privacy of data

- Differences in regulations between different countries
- Additional constraints when it comes to transfer of personal data
- It can affect not only transfer of data but even migration of containers/VMs when loaded with data





## Transfer of general data

- GDPR (General Data Protection Regulation) to come in effect in EU from May 2018 will set out a single rule within EU
  - mainly for personal data
- Legal fragmentation can be a problem (e.g. data retention period differences)
- Data localization issues; some countries (e.g. Russia, Brazil, China)
  require storage of data within national borders





## Transfer of personal data (1/2)

- GDPR to set out a single rule within EU
- Personal data can be transferred to a third country
  - on the basis of an adequacy decision (i.e. the third country ensures an adequate level of protection); this can take a long time
  - binding corporate rules, within the same corporate group in countries that do not provide an adequate level of protection; costs money and take time
  - standard data protection clauses, needs a contract for each data transfer
  - uncertain legal situation in Japan for these 3 options





## Transfer of personal data (2/2)

- Personal data can be transferred to a third country
  - on the basis of explicit consent from the data subject; limits the use of data for purposes and by parties not known at data collection time
  - on the basis of anonymization, so that data are not classified as personal; location is considered as an identifiable feature so datasets may become too limited; merging of datasets may allow for indirect identification
- APPI Bill in Japan requires explicit consent or adequate data protection system in the third country
- Explicit consent is the preferred option





- Transfer of data in iKaaS (1/4)
  - Handled through the Security Gateway in collaboration with the Privacy
    CA







### Transfer of data in iKaaS (2/4)

- Privacy CA issues certificate to be used by the Security Gateway to interpret the rules in the country of the originating Application
- Security Policy reflects the rules for access to data in Local Cloud DBs based on national/regional regulations
- Privacy Policy indicates the consent status for personal data
- Application is issued a token and can access the data using the same token many times





Transfer of data in iKaaS (3/4)







- Transfer of data in iKaaS (4/4)
  - Data are filtered according to the status of the consent of the data owner

Token





**Privacy Control** 





- Cross border scenarios in iKaaS
  - Health Support Service; a person from Japan visits EU and there is need for health monitoring
  - Environmental Support Service; a person from Greece visits Madrid and needs to use location-based services





Health Support Service (1/2)







## Health Support Service (2/2)

- Need to access personal data stored in Tago-nishi and transfer them to a Data Processing component in a different country
- To overcome this privacy issue, the Security Gateway is exploited, which authorizes the request for the Heart Rate data retrieval process and keeps the data protected.
- Similar scenario implemented with room settings retrieved from JP to be used for environmental adaptation while in EU



Environmental Support Service (1/2)







## • Environmental Support Service (2/2)

- No security or privacy issues with respect to data transfer; only local data are used
- Optimal route is derived based on data stored in the Madrid local cloud
- Once the person is back in Greece, a request for a similar route in Greece will use the corresponding data and Data Processing component in Greece





# **Table of Contents**

- Project Introduction
- Challenges in IoT + Big Data + Cloud and the iKaaS approach
- Smart City Applications in iKaaS
- Cross-border issues
- Our legacy to the community
- Summary
- Conclusions





## Development of modules for (1/2)

- making data from various sources understandable
- registration of:
  - services
  - physical hosts capabilities
  - user profiles
  - data/knowledge
- analysis of service requests
  - cloud awareness complemented with IoT service awareness



## Development of modules for (2/2)

- data processing and knowledge generation in smart city / smart home scenarios
  - online and offline
- ensuring trust and secure flow of IoT data among multiple clouds
  - reputation management of IoT sources and services
  - social trust calculation ("my cloud is your cloud")
  - security gateway and supporting components





- APIs for 3rd party access to exposed platform functionalities and data
  - "knowledge as a Service" for all
  - third parties as consumers and providers
- Provide iKaaS components (toolbox) as PaaS services
  - components as containers for wide market take-up
  - take advantage of monitoring and configuration/deployment tools offered by (open-source) cloud management tools





#### Who can benefit from us

- Public Administrations, Health Support Service Providers, Town Management Service Providers, Technology/Solutions Providers
  - from the iKaaS toolbox
- Citizens
  - as users of Smart City services
  - as users of the iKaaS toolbox to build their own home cloud installations
- Cloud communities.
  - from our real life testing of cloud technologies in Smart City contexts









# **Table of Contents**

- Project Introduction
- Challenges in IoT + Big Data + Cloud and the iKaaS approach
- Smart City Applications in iKaaS
- Cross-border issues
- Our legacy to the community
- Summary
- QSA
- Conclusions





- IoT + Big Data + Cloud combination has a lot of potential but also challenges that need to be addressed
- Contribution of data sources, actuators, software functionalities as well as hardware infrastructure are key to support knowledge generation and services
- Cross-border issues especially due to regulation/privacy of data issues are not to be ignored (security gateway has been accepted for standardization in oneM2M)
- iKaaS has been developing the toolbox and APIs to empower several application domains





#### Further details

Web: www.ikaas.com

• Twitter: @ikaasH2020

• Email: s.georgoulas@surrey.ac.uk kiyomoto@kddi-research.jp





